Search results

1 – 10 of 46
Article
Publication date: 26 January 2024

Kai Liu, Yuming Liu and Yuanyuan Kou

Inter-organizational collaboration is the organizational guarantee and key link to achieve the goals of megaproject management. Project governance has always played an important…

Abstract

Purpose

Inter-organizational collaboration is the organizational guarantee and key link to achieve the goals of megaproject management. Project governance has always played an important role in the construction of megaprojects, but the relationship between project governance and organizational collaboration is unclear. The purpose of this study is to explore the role paths of different project governance mechanisms in influencing the collaborative behaviors of stakeholders and collaborative performance and to elucidate the mechanism of project governance on inter-organizational collaboration.

Design/methodology/approach

A conceptual framework was developed based on a comprehensive literature review, termed the structural equation model (SEM). The hypotheses of the model were tested based on data obtained from a questionnaire survey of 235 experts with experience in megaprojects within the construction industry in China.

Findings

The results show that project governance positively contributes to the collaborative behavior of megaproject stakeholders and the collaborative performance of the project team. Collaborative behavior acts as a partial mediator between project governance and the collaborative performance of the megaproject inter-organization alliance. The complexity of the project modulates the relationship between the governance mechanism of the project and the collaborative behavior of the stakeholders, which affects the collaborative performance of the megaproject inter-organization alliance.

Originality/value

The findings provide theoretical and practical implications for promoting positive collaborative behavior among stakeholders in megaproject selection and improving the collaborative performance of megaproject inter-organization alliances.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 13 February 2023

Kai Liu, Yuming Liu, Yuanyuan Kou and Xiaoxu Yang

The mega railway infrastructure projects are faced with complex environments and multi-level management challenges. Thus, the mega railway infrastructure project management system…

Abstract

Purpose

The mega railway infrastructure projects are faced with complex environments and multi-level management challenges. Thus, the mega railway infrastructure project management system not only needs to focus on its composition, but also needs to consider changes and impacts of internal and external environment.

Design/methodology/approach

This study attempts to introduce the concept of dissipative structure from the perspective of complexity theory and constructs a positive entropy and negentropy flow index system for mega railway infrastructure project management system in order to analyze the factors of management system more deeply. The Brusselator model is used to construct the structure of the mega railway infrastructure project management system, and the entropy method is used to calculate the positive entropy and negentropy values to verify whether the management system is a dissipative structure.

Findings

A plateau railway project in China was used as an example for an empirical study, not only its own characteristics are analyzed, but also the role of constraints and facilitation of the internal and external environment. Based on the research results, several effective suggestions are put forward to improve the stability and work efficiency of mega railway infrastructure project management system.

Originality/value

This study demonstrates that mega railway infrastructure project management system has the characteristics of dissipative structure. It can provide theoretical support for the development of mega railway infrastructure project management system from disorderly state to orderly state.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 9 June 2023

Yuming Liu, Yong Zhao, Qingyuan Lin, Sheng Liu, Ende Ge and Wei Wang

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations…

Abstract

Purpose

This paper aims to propose a framework for optimizing the pose in the assembly process of the non-ideal parts considering the manufacturing deviations and contact deformations. Furthermore, the accuracy of the method would be verified by comparing it with the other conventional methods for calculating the optimal assembly pose.

Design/methodology/approach

First, the surface morphology of the parts with manufacturing deviations would be modeled to obtain the skin model shapes that can characterize the specific geometric features of the part. The model can provide the basis for the subsequent contact deformation analysis. Second, the simulated non-nominal components are discretized into point cloud data, and the spatial position of the feature points is corrected. Furthermore, the evaluation index to measure the assembly quality has been established, which integrates the contact deformations and the spatial relationship of the non-nominal parts’ key feature points. Third, the improved particle swarm optimization (PSO) algorithm combined with the finite element method is applied to the process of solving the optimal pose of the assembly, and further deformation calculations are conducted based on interference detection. Finally, the feasibility of the optimal pose prediction method is verified by a case.

Findings

The proposed method has been well suited to solve the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the effectiveness of the method with an example of the shaft-hole assembly.

Research limitations/implications

The method proposed in this paper has been well suited to the problem of the assembly process for the non-ideal parts with complex geometric deviations. It can obtain the reasonable assembly optimal pose considering the constraints of the surface morphological features and contact deformations. This paper has verified the method with an example of the shaft-hole assembly.

Originality/value

The different surface morphology influenced by manufacturing deviations will lead to the various contact behaviors of the mating surfaces. The assembly problem for the components with complex geometry is usually accompanied by deformation due to the loading during the contact process, which may further affect the accuracy of the assembly. Traditional approaches often use worst-case methods such as tolerance offsets to analyze and optimize the assembly pose. In this paper, it is able to characterize the specific parts in detail by introducing the skin model shapes represented with the point cloud data. The dynamic changes in the parts' contact during the fitting process are also considered. Using the PSO method that takes into account the contact deformations improve the accuracy by 60.7% over the original method that uses geometric alignment alone. Moreover, it can optimize the range control of the contact to the maximum extent to prevent excessive deformations.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 20 April 2023

Kim-Lim Tan, Yuming Liu and Qiuting Ye

With the worsening of corporate fraud and consequential loss, the growing importance of truthful disclosure is globally advocated. This study aims to examine corporate…

Abstract

Purpose

With the worsening of corporate fraud and consequential loss, the growing importance of truthful disclosure is globally advocated. This study aims to examine corporate governance’s role in accountants’ intention to disclose fraudulent practices honestly. At the same time, this study examines intergender differences concerning the formation of the disclosure intention.

Design/methodology/approach

Based on the theory of planned behavior (TPB), data from 256 accountants working in China have been collected via an online survey. This data is subsequently analyzed with the partial least square (PLS) structural equation modeling method.

Findings

The results revealed that integrity and corporate governance significantly positively affect employees’ attitudes, subjective norms and perceived behavioral control toward disclosure intention. At the same time, it shows that only subjective norm and perceived behavioral control established a significant positive relationship with disclosure intention. It also shows that males display higher attitudes and perceived behavioral control in developing the intention.

Originality/value

This study helps understand accountants’ disclosure intention of fraud practices, especially during shock events such as the COVID-19 pandemic. To the best of the authors’ knowledge, this study is the first to extend the TPB incorporating corporate governance and integrity as antecedents to disclosure intention. At the same time, this study contributes to the existing literature by being the first attempt to investigate intergender differences. Finally, it advances the body of knowledge on employees’ behavior and contributes methodologically by introducing the PLS approach.

Details

Accounting Research Journal, vol. 36 no. 2/3
Type: Research Article
ISSN: 1030-9616

Keywords

Article
Publication date: 21 April 2022

Kunyong Chen, Yong Zhao, Yuming Liu, Haidong Yu and Shunzhou Huang

This paper aims to propose an optimization method to automatically adjust the spatial route of multibend pipes to meet the assembly demands in constrained space.

Abstract

Purpose

This paper aims to propose an optimization method to automatically adjust the spatial route of multibend pipes to meet the assembly demands in constrained space.

Design/methodology/approach

The compact geometric parameters that uniquely determine the pipe route are analyzed. Besides, the relationship between these parameters and the end pose is revealed based on the exponential product formula. Mathematical representations for the engineering constraints, including the end pose restriction, collision interference, manufacture ability and geometric limitations, are further established. On this basis, the adjustment of the spatial route is formulated as a multiconstraint optimization problem. A modified particle swarm optimization method based on the combination of gradient projection and swarm intelligence is designed to find the near-optimal pipe that meets the required assembly demands.

Findings

The experimental results show that the proposed method can effectively find the feasible pipe route that satisfies the engineering constraints and the end pose requirement is highly guaranteed.

Originality/value

The proposed method can automate the geometric adjustment of multi-bend pipes to meet the actual assembly demands, which significantly reduces manual efforts and guarantees high accuracy. The results demonstrate the possibility of further applications in the pipe assembly or design process, especially in ships, aerospace products or pressure vessels.

Details

Assembly Automation, vol. 42 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 5 March 2018

Boya Ji, Yuming Liu and Zhanyong Jin

The purpose of this paper is to utilise a “Wuli-Shili-Renli (WSR)” system approach to create models for complex smart building energy management and evaluate the establishment of…

Abstract

Purpose

The purpose of this paper is to utilise a “Wuli-Shili-Renli (WSR)” system approach to create models for complex smart building energy management and evaluate the establishment of a building energy management platform.

Design/methodology/approach

The complexity and diversity of the data and demands of the energy management platform mean that it is necessary to analyse comprehensively. This paper uses a WSR system approach to handle, and optimise, the relationship between demands and participants and improve the whole platform. Then, this paper establishes comprehensive evaluation models to analysis the current energy management platforms by using the best integration platform as the baseline.

Findings

The WSR conceptual model clarifies the relationship between the elements and elements of the energy management platform clearly and provides the appropriate analytical methods with which to resolve key platform construction issues. The comprehensive evaluation based on a WSR system approach can take into account the systematic effect, so it is more accurate.

Research limitations/implications

The correlation degree between the layers of the energy management platform is rarely reflected.

Originality/value

This paper improves the modelling method used in the WSR system approach and demonstrates that the comprehensive evaluation based on the WSR system approach analyses the energy management platform for public buildings in a synthetic approach.

Article
Publication date: 13 November 2017

Zhixiang Song, Fei Guo, Ying Liu, Songtao Hu, Xiangfeng Liu and Yuming Wang

This paper aims to present the slip/no-slip design in two-dimensional water-lubricated tilting pad thrust bearings (TPTBs) considering the turbulence effect and shifting of…

Abstract

Purpose

This paper aims to present the slip/no-slip design in two-dimensional water-lubricated tilting pad thrust bearings (TPTBs) considering the turbulence effect and shifting of pressure centers.

Design/methodology/approach

A numerical model is established to analyze the slip condition and the effect of turbulence according to a Reynolds number defined in terms of the slip condition. Simulations are carried out for eccentrically and centrally pivoted bearings and the influence of different slip parameters is discussed.

Findings

A considerable enhancement in load capacity, as well as a reduction in friction, can be achieved by heterogeneous slip/no-slip surface designs for lubricated sliding contacts, especially for near parallel pad configurations. The optimized design largely depends on the pivot position. The load capacity increases by 174 per cent for eccentrically pivoted bearings and 159 per cent for centrally pivoted bearings for a suitable design. When slip zone locates at the middle of the radial direction or close to the inner edge, the performance of the TPTB is better.

Research limitations/implications

The simplification of slip effect on the turbulence (definition of Reynolds number) can only describe the trend of the increasing turbulence due to slip condition. The accurate turbulence expression considering the boundary slip needs further explorations.

Originality/value

The shifting of pressure center due to the slip/no-slip design for TPTBs is investigated in this study. The turbulence effect and influence of slip parameters is discussed for large water-lubricated bearings.

Details

Industrial Lubrication and Tribology, vol. 69 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 28 August 2018

Zhanchao Wang, Fei Guo, Ying Liu, Xiangfeng Liu and Yuming Wang

This paper aims to design a new surface profile with simpler processing technology, which makes the bearing load carrying capacity (LCC) close to that of conventional tilting-pad…

Abstract

Purpose

This paper aims to design a new surface profile with simpler processing technology, which makes the bearing load carrying capacity (LCC) close to that of conventional tilting-pad thrust bearing.

Design/methodology/approach

The paper analyzes the LCC of the thrust pad with crown profile and designs a new profile, whose performance is similar to the crown profile. The laser method is introduced to fabricate the new profile. The profile with tiny crown height can be fabricated by the laser with the proper parameters.

Findings

It was found that there is an optimum value, which is best in terms of the capacity of tilting-pad thrust bearing reach. The new profile with proper parameters can replace the crown profile.

Originality/value

The new profile can replace the crown profile and is easier to be made. The new design method could be adopted for designing the pad surface profile of the tilting-pad thrust bearing.

Details

Industrial Lubrication and Tribology, vol. 70 no. 8
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 20 June 2019

Qiang He, Weifeng Huang, Ying Liu, Xiangfeng Liu, Yongjian Li and Yuming Wang

This paper aims to investigate the influence of the contact status between the seal ring and its support on the seal performance in hydrostatic mechanical face seal.

Abstract

Purpose

This paper aims to investigate the influence of the contact status between the seal ring and its support on the seal performance in hydrostatic mechanical face seal.

Design/methodology/approach

A thermal fluid-solid interaction (TFSI) model of hydrostatic mechanical face seal is further developed, in which the multi-body contacts between components are particularly given more attention. The numerical models of the flow field and complete seal assemblies are developed. A specific energy equation is obtained to simplify the calculation of film temperature. Based on the mechanism for the continuity condition of the physical quantities at the fluid–solid interface, the TFSI model uses an on-line iterative coupling method.

Findings

The contact status between seal ring and its support affects the seal performance significantly. The rotating ring and the stationary ring contribute differently because of the contact status difference.

Originality/value

The contact status between the seal ring and the ring seat is key to gain an insight into the performance of the hydrostatic mechanical face seal thus provides guidance for mechanical seal design.

Details

Industrial Lubrication and Tribology, vol. 71 no. 7
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 25 September 2018

Zhanchao Wang, Fei Guo, Ying Liu, Xiangfeng Liu and Yuming Wang

This aim of this paper has been to investigate the squeeze effect of a water-lubricated tilting-pad thrust bearing during start-up and shut-down periods.

Abstract

Purpose

This aim of this paper has been to investigate the squeeze effect of a water-lubricated tilting-pad thrust bearing during start-up and shut-down periods.

Design/methodology/approach

In this paper a numerical model with a squeeze and slippage effect was adopted to analyse the asymmetry characteristic of a tilting-pad thrust bearing during start-up and shut-down periods. A test rig was built to verify numerical results, which were a combined measurement method in which acceleration sensor and torque sensor were used simultaneously to determine the angle change of the thrust pad.

Findings

It was found that as the velocity gradient increased, the difference of the minimum dimensionless film Hmin could be ignored in the start-up process. But in the shut-down process, as the velocity gradient increased, the value of Hmin also increased, which showed that there was an asymmetry characteristic of the tilting bearing in two processes. This phenomenon was verified by measuring the friction torque curve in the test.

Originality/value

The results of the studies demonstrated that the velocity gradient could be designed to reduce the friction of the thrust bearing, which would be beneficial to the working life of the tilting-pad thrust bearing.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of 46